Using hyperosmolar stress to measure biologic and stress-activated protein kinase responses in preimplantation embryos.

نویسندگان

  • Y Xie
  • W Zhong
  • Y Wang
  • A Trostinskaia
  • F Wang
  • E E Puscheck
  • D A Rappolee
چکیده

We used hyperosmolar stress to test blastocysts for their biologic and enzymatic responses to culture stress. Embryos mount dose- and time-dependent responses to hyperosmolar stress. Biological responses included slowed cavitation and cell accumulation and increased apoptosis at increasing doses. These responses were preceded by stress-activated protein kinase (SAPK) phosphorylation and nuclear translocation consistent with its causal role. For cavitation and new cell cycle initiation, 200 mM sorbitol caused stasis. Above 200 mM, sorbitol was ultimately lethal and below 200 mM, its embryos had milder effects. Phosphorylated SAPK was induced rapidly in embryos at 0.5 h in a dose-dependent manner from 0 to 600 mM sorbitol. Higher hyperosmolarity caused a biphasic peak of phosphorylated SAPK, but there was no return to baseline through 3 h. At 24 h, a dose-dependent response persisted that was linear from 0 to 200 mM sorbitol. Hyperosmolar stress rapidly induced, within 0.5 h, phosphorylated, nuclear c-Jun and decreased phosphorylated, nuclear c-Myc in a SAPK-dependent manner. The data suggest that SAPK is induced and functions on down-stream effector molecules in a temporal and quantitative manner consistent with its function in the embryonic homeostatic response to stress. The remarkable resistance of embryos to high concentrations of sorbitol suggests that part of its homeostatic response is different from that of somatic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis.

BACKGROUND In order to advance the development of culture conditions and increase the potential for supporting normal preimplantation embryo development in vitro, it is critical to define the mechanisms that early embryos utilize to survive in culture. We investigated the mechanisms that embryos employ in response to culture medium osmolarity. We hypothesized that mitogen-activated protein kina...

متن کامل

Inhibition of Endoplasmic Reticulum Stress Improves Mouse Embryo Development

X-box binding protein-1 (XBP-1) is an important regulator of a subset of genes during endoplasmic reticulum (ER) stress. In the current study, we analyzed endogenous XBP-1 expression and localization, with a view to determining the effects of ER stress on the developmental competency of preimplantation embryos in mice. Fluorescence staining revealed that functional XBP-1 is localized on mature ...

متن کامل

Reduced glutathione alleviates tunicamycin-induced endoplasmic reticulum stress in mouse preimplantation embryos

Endoplasmic reticulum (ER) stress, a dysfunction in protein-folding capacity, is involved in many pathological and physiological responses, including embryonic development. This study aims to determine the developmental competence, apoptosis, and stress-induced gene expression in mouse preimplantation embryos grown in an in vitro culture medium supplemented with different concentrations of the ...

متن کامل

Reactive oxygen species-mediated unfolded protein response pathways in preimplantation embryos

Excessive production of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress-mediated responses are critical to embryonic development in the challenging in vitro environment. ROS production increases during early embryonic development with the increase in protein requirements for cell survival and growth. The ER is a multifunctional cellular organelle responsible for protein fold...

متن کامل

Endoplasmic reticulum stress in periimplantation embryos

Stress coping mechanisms are critical to minimize or overcome damage caused by ever changing environmental conditions. They are designed to promote cell survival. The unfolded protein response (UPR) pathway is mobilized in response to the accumulation of unfolded proteins, ultimately in order to regain endoplasmic reticulum (ER) homeostasis. Various elements of coping responses to ER stress inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular human reproduction

دوره 13 7  شماره 

صفحات  -

تاریخ انتشار 2007